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Decision making often relies on our ability to combine information 
from different sources and to make inferences even when the relation-
ship between cues and outcomes is not deterministic. For instance, 
in the so-called weather prediction task that is commonly used in 
cognitive neuroscience, a categorical choice (rain or sunshine) can 
be predicted only probabilistically on the basis of given cues1–5. Such 
a decision is challenging not only owing to its probabilistic charac-
ter but also because a single choice is preceded by many cues, so it 
is not obvious how to deduce correctly cue–outcome associations 
(for example, identifying an allergenic or poisonous substance after  
consuming a few food items and getting sick). Little is known about 
the neural computations underlying this cognitive ability of proba-
bilistic reasoning.

A recent study suggested that monkeys are capable of some forms 
of probabilistic inference and revealed neural correlates of this abil-
ity at the single-cell level in the lateral intraparietal cortex (LIP)6.  
In particular, this neural activity encodes the combination of  
information from different cues (visual shapes) in terms of the log 
likelihood ratio (log LR), a quantity which the monkeys seemed to 
learn through experience with the cues and use to combine informa-
tion in order to make a decision on each trial. This neurophysiological 
finding supports the theoretical proposal that log LR provides a quan-
tity suitable for the accumulation of sensory evidence7,8. However, it 
raises the question of how such a quantity could be computed and 
learned biophysically.

We propose that quantities such as the likelihood or posterior prob-
ability can be learned and encoded by synapses that have bounded 
weights and undergo reward-dependent Hebbian plasticity9–11. The 
computational implications of bounded synapses have only begun 
to be recognized. In particular, previous work has shown that the 

capacity of long-term memory storage depends notably on whether 
synapses are bounded or not12,13. In our model, trial-by-trial deci-
sion making is determined by statistical sampling of stochastic neural 
dynamics14–19; firing activity of single cells correlates with conditional 
reward probabilities because neurons are driven by bounded synapses 
that learn probabilistic cue-outcome associations.

We show that in a simulated probabilistic inference task, these syn-
apses can estimate the naive posterior probability—that is, the pos-
terior probability that a choice alternative is assigned a reward given 
that a cue is presented in any combination of cues. Furthermore, in a 
decision circuit, the choice behavior is determined by the difference in 
the inputs associated with each choice option, which is approximately 
proportional to the sum of the log posterior odds for the presented 
cues. The cue combination is thus near-optimal (that is, according 
to the Bayes rule) when the prior probabilities of reward assignment 
on each choice alternative are equal. However, when priors are not 
equal, the model predicts specific deviations that can directly be tested 
experimentally. Such deviations from the Bayes rule can explain the 
‘base-rate neglect’ effect observed in human behavioral studies20. 
Overall, our model reproduces salient behavioral and single-unit 
neural data6 and provides insights into the neural mechanisms of 
three key computational processes: inference, cue combination and 
probabilistic decision making.

RESULTS
Learning posteriors by plastic synapses
In this section we show how plastic synapses are able to estimate 
probabilistic quantities such as posteriors. We assume that indi-
vidual plastic synapses are binary (with a depressed and a potenti-
ated state); hence, the strength of a set of plastic synapses can be  
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We propose that synapses may be the workhorse of the neuronal computations that underlie probabilistic reasoning. We built a 
neural circuit model for probabilistic inference in which information provided by different sensory cues must be integrated and 
the predictive powers of individual cues about an outcome are deduced through experience. We found that bounded synapses 
naturally compute, through reward-dependent plasticity, the posterior probability that a choice alternative is correct given that 
a cue is presented. Furthermore, a decision circuit endowed with such synapses makes choices on the basis of the summed log 
posterior odds and performs near-optimal cue combination. The model was validated by reproducing salient observations of, and 
provides insights into, a monkey experiment using a categorization task. Our model thus suggests a biophysical instantiation of 
the Bayesian decision rule, while predicting important deviations from it similar to the ‘base-rate neglect’ observed in human 
studies when alternatives have unequal prior probabilities.
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quantified by the fraction of synapses in the potentiated state9–11,21,22.  
This quantity is called the ‘synaptic strength’ and denoted as ciA or 
ciB, for the set of synapses from sensory neurons selective for cue 
Si onto action value–encoding neurons selective for choice A or B, 
respectively (Fig. 1a).

Plastic synapses learn cue–outcome contingencies through sto-
chastic reward-dependent Hebbian modifications9–11 (see Online 
Methods for details of the learning rule). That is, at the end of the 
trial, only the sets of plastic synapses from sensory neurons selective 
for the presented cues onto action value–encoding neurons selective 
for the chosen action are updated, with the direction (potentiation 
or depression) depending on the choice outcome: if the choice of the 
model is rewarded, synapses in the depressed state make a transition 
to the potentiated state with a probability q+; otherwise, they make a 
transition in the reverse direction with a probability q−.

Consider a simple situation where only one cue (Si) is presented 
on each trial, and it determines the reward probability for each of the 
two alternative responses, P(A | Si) and P(B | Si) = 1 – P(A | Si). In 
this case, the reward assignment is independent of the choice selec-
tion and the probability that a set of synapses is potentiated (say, for 
synapses selective for cue Si and choice A) is equal to the product of 
three probabilities: the probability that cue Si is presented, P(Si); the 
probability that choice A is selected when cue Si is presented, PA(Si); 
and the probability that choice A is assigned a reward given cue Si is 
presented, P(A | Si). The probability of depression for the same set of 
synapses is P(Si) × PA(Si) × (1 – P(A | Si)).

Through ongoing learning, the synaptic strength for each set of 
plastic synapses eventually reaches a steady-state value. If the learn-
ing rates are small, the steady state of the synaptic strength can be 
computed by setting the overall change equal to zero: 
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= − × × × −
× × × −

+ −( ) ( ) ( ) ( | )

( ) ( ) (

1

1 PP A Si( | )) = 0

which gives an expression for the steady state of the synaptic 
strength 
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where r is the learning rate ratio (r = q+/ q−). Therefore, when each 
cue is presented alone, the steady state is independent of the choice 
behavior (that is, PA(Si)).

In the special case of equal potentiation and depression rates  
(r = 1), the steady state of the synaptic strength is equal to the posterior 
probability, c P A SiA i

ss = ( | ) (Fig. 1b). In general, when the learning rates 
are not equal, the synaptic strength is a nonlinear monotonic function 
of the posterior probability (Fig. 1b).

Computation of log posterior odds
In our model, the decision circuit (Fig. 1a) generates a categorical 
choice (A or B) stochastically on single trials, with a probability which 
is a sigmoid function of the difference in the overall inputs to its selec-
tive pools (the differential input)9–11,14. Because cue-selective neurons 
fire at a similar rate, the differential input is solely determined by the 
difference in the synaptic strengths from the action value–encoding  
neurons onto the decision neurons. Using equation (1), we can 
compute the difference in the synaptic strengths (∆c c ci

ss
iA
ss
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ss≡ – )  
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This formula can be simplified by observing that the second term in the 
denominator, k = (r – 1)2P(A|Si)P(B|Si), is zero when r = 1, and its vari-
ation is negligible (compared to the first term r) provided that r is not 
too large and that values of posterior probabilities are in an intermedi-
ate range (for 0.2 ≤ P(A|Si) ≤ 0.8, 4(r – 1)2 / 25 ≤ k ≤ (r – 1)2 /4). Since 
k is roughly constant, the difference in the steady state of the synaptic 

a b

c

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1.0

c iAss

P(A | Si)

c iAss
 −

 c
iBss

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P(A | Si) − P(B | Si)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

log10(P(A | Si) / P(B | Si))

lo
g 10

x

(1
 –

 x
)

x − (1 − x)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Reward

B

B

A

A

Action

Inh
Excitatory
Inhibitory
Plastic
Modulatory

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8

r = 2
r = 3
r = 4
r = 5

r = 1

r = 2 
r = 3 
r = 4 
r = 5 

r = 1 

c iAss
 −

 c
iBss

Figure 1 Schematic of the model and posterior 
computation by plastic synapses when a single 
cue is presented on each trial. (a) Schematic of 
the three-layer model. The first layer consists 
of cue-selective neural populations, each is 
activated upon the presentation of a cue  
(a shape in the weather prediction task). The 
sensory cue–selective neurons provide, through 
some synapses endowed with reward-dependent 
Hebbian plasticity, inputs to two neural 
populations in an intermediate layer that encode 
reward values of two choice alternatives (action 
values). Combination of cues is accomplished 
through convergence of cue-selective neurons 
onto action value–encoding neurons. The latter 
project to excitatory and inhibitory neural 
populations in a decision making circuit (gray 
box). The choice (A or B) is determined by which 
of the two decision neural populations wins 
competition on a trial. Depending on the reward 
schedule, a chosen action may be rewarded or 
not. The presence (respectively absence) of a 
modulatory reward signal leads to potentiation 
(respectively depression) of plastic synapses. 
(b) Steady state of the synaptic strength as a 
function of the posterior probability for different values of the learning rate ratio r = q+ / q− (equation (1)). When r = 1, the synaptic strength is equal 
to the posterior. (c) Difference in the steady state of the synaptic strengths as a function of the difference in the posteriors (left panel) and of the log 
posterior odds (right panel), for different learning rate ratios. Dashed lines show linear fits for the values of posterior between 0.2 and 0.8. The inset 
shows the relationship between log10(x / (1 – x)) and x – (1 – x) over the same range, where x = P (A | Si) and P (B | Si) = 1 – P (A | Si) = 1 – x.
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strengths is proportional to the difference in posterior probabilities for 
the two choice alternatives (Fig. 1c) 

∆c
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(3)

Furthermore, we note that x – (1 – x) ≈ log10(x/(1 – x)) if 0.2 ≤ x ≤ 0.8 
(Fig. 1c). Therefore, for the intermediate range of posteriors where the 
model’s choice behavior is stochastic, the difference in the synaptic 
strengths is linearly proportional to the log posterior odds (Fig. 1c): 
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For smaller or larger values of posteriors, the choice behavior is deter-
ministic (the probability of choosing A is close to 0 or 1). Of particular 
note, equation (4) holds in the general case of unequal learning rates, 
when ciA

ss is a nonlinear function of P(A | Si) (Fig. 1b).
In summary, when the choice outcome is based on a single cue, 

synapses endowed with realistic reward-dependent plasticity are 
capable of estimating quantities such as posteriors, and a decision 
network driven by such synapses can make decision according to log 
posterior odds.

Summation of log posterior odds
What happens if a choice outcome is preceded by several cues? To 
address this question, we considered a probabilistic categorization 
task known as the weather prediction task in which four shapes pre-
cede a selection between two (A = red, B = green) response targets 
on each trial6.These shapes are selected randomly from a set of ten 
distinguishable shapes (Si, i = 1, 2, ..., 10), each of which is allocated 
a unique weight of evidence (WOE) relating to the probability of 
reward assignment on one of the two choice targets 

WOE = log
( | )

( | )10
P A S

P B S
i

i

The computer assigns a reward to one of the two alternative choices with 
a probability that depended on the sum of the WOEs from all the shapes 
presented on a given trial (see Online Methods for more details).

In model simulations of the weather prediction task, on each trial, 
pools of sensory neurons selected for the presented cues are activated 
and converge onto action value-encoding neurons (Fig. 1a). At the 

end of the trial, all sets of plastic synapses from neurons selective for 
the presented shapes onto value-encoding neurons selective for the 
chosen action are updated independently of their role in decision 
making. As a result, synaptic changes for different shapes become 
correlated. Even though there are 104 stimulus patterns, we found 
that it took only a few hundred trials for the synaptic strengths to 
reach their average (steady-state) values (Fig. 2a), on a time scale 
largely set by the learning rates. This means that, after a few hundred 
trials, the model is able to correctly perform the task while plastic 
synapses continue to fluctuate (around their steady states) owing to 
ongoing learning.

As in equation (1), we can find an expression for the steady state of 
the synaptic strength (see Supplementary Note 1). Simulation results 
showed it to be approximately a linear function of the ‘naive’ poste-
rior probability (Fig. 2b). Naive posterior probability, P A Si( | ), is the 
conditional probability that alternative A is assigned a reward given 
that shape Si is presented in any one epoch. It is the generalization of 
posterior when more than one cue precedes an outcome, assuming 
independence between the evidence provided by each cue. It follows 
from the above mathematical reasons that the difference in the syn-
aptic strengths is approximately a linear function of the log naive 
posterior odds (Fig. 2c) 
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where the linear fit yielded a = 0.48.
Because the convergence of sensory neurons onto action value–

encoding neurons naturally sums the currents through sets of plastic 
synapses related to presented cues, the overall differential input to 
decision neurons is given by the sum of log naive posterior odds. 
Thus, this model provides a natural mechanism for integrating evi-
dence in terms of log posterior odds.

Simulation of weather prediction task: behavioral results
The results reported above are general, suggesting that our model 
endowed with the proposed reward-dependent learning rule is broadly 
applicable to probabilistic decision making tasks that involve inference. 
To test whether this model can account for behavioral performance as 
well as neural activity data, we simulated a monkey experiment6.

Computer simulations followed the experimental protocol (see 
Online Methods for details). Because there is intrinsic noise in the 
neural circuit, the model’s choice can vary from trial to trial even if 
the synaptic strengths are identical. In addition, synapses are updated 
at the end of each trial, hence the leverage that each presented shape 
has on decision making changes from trial to trial, leading to dynamic 
adjustment of choice behavior over time. The adaptive choice behav-
ior of the model is described by the psychometric function (Fig. 3a), 
where the probability of selecting A is plotted against the sum of 
the WOEs assigned to individual shapes in a pattern. Therefore, the 
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Figure 2 Posterior computation by plastic synapses when multiple 
cues are presented on each trial. (a) Time course of learning in plastic 
synapses. Shown is the difference in the strengths of synapses from 
a cue-selective neural population onto the two action value–encoding 
neural populations (A and B). In all figures, different color shades from 
blue to red correspond to shapes S1 to S10. All synaptic strengths are 
initially set to 0.5; they reach their steady states after a few hundred 
trials. (b) Average synaptic strength for each set of synapses plotted as a 
function of the naive posterior probability that alternative A is assigned 
a reward, given that shape Si is presented in any pattern. (c) Difference 
in the average synaptic strengths is linearly proportional to the log naive 
posterior odds.
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model reproduces the main behavioral observation of ref. 6: namely, 
the monkeys selected each alternative stochastically based on the 
 combined evidence provided by all presented shapes in a pattern, 
with a probability that is approximately a sigmoid function of the 
summed WOEs (see Fig. 1b in ref. 6).

The psychometric function quantifies the influence of combina-
tions of shapes (and not the individual shapes) on the choice behavior. 
Following ref. 6, we used a logistic regression model (see equation (13) 
in Online Methods) to estimate the influence of individual shapes on 
the choice behavior. These regression coefficients, called the subjec-
tive weights of evidence (SWOEs), are shown in Figure 3b. As in the 
experimental findings, the SWOEs are smaller than the assigned WOEs 
(see Fig. 1c in ref. 6). In particular, the SWOEs for the trump shapes 
(that is, shapes with infinite WOE) are finite (compare Supplementary 
Fig. 1 with Supplementary Fig. 2 in ref. 6). Moreover, we found that the 
SWOEs did not depend on the time interval (epoch) in which the shape 
was presented, as observed experimentally (compare Supplementary 
Fig. 2 with Supplementary Fig. 3 in ref. 6).

Our results explain the following two main observations regard-
ing the choice behavior. First, why does the model underestimate the 
WOEs? This happens because the SWOE of the model is proportional 
to the log naive posterior odds, which is less than the WOE because of 
the concurrence of different shapes on each trial (see Supplementary 
Fig. 3). Second, how does the model combine information from mul-
tiple cues, and why is the choice behavior approximately a sigmoid 
function of the summed evidence provided by shapes in a pattern 
(Fig. 3a)? For a given pattern, the choice behavior of the model is 
approximately a sigmoid function of the overall differential synap-
tic input, c ciA

ss
i iB

ss∑ −  (see Supplementary Fig. 4 and equation (6) 
in Supplementary Note 2). Consequently, the choice behavior is a 
sigmoid function of the sum of the log naive posterior odds, using 
equation (5): 

P C
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where PA(Ct) is the probability of selecting A given pattern Ct (that is, all 
patterns with the sum WOE equal to t) is presented the sum is over all 
shapes in such patterns, and 1/s quantifies the sensitivity of the choice 
behavior on the differential synaptic input. We found that the log naive 
posterior odds was linearly proportional to the WOE for the non-trump 

shapes (Supplementary Fig. 3c). Therefore, the psychometric function 
shown in Figure 3a is a sigmoid function of the summed WOEs of all 
shapes (for patterns that do not contain trump shapes).

It is instructive to compare our model with an ideal Bayesian observer 
who can directly learn the likelihood associated with each pattern. The 
latter would combine the likelihood ratio associated with a given pattern 
and the prior odds (that each alternative is assigned a reward) to obtain 
the posterior odds for that pattern (see Supplementary Note 3 for another 
scenario). The posterior odds then can be used to make a decision accord-
ing to different decision rules; for example, strict Bayesian (selecting the 
alternative with the larger posterior) or probabilistic Bayesian (matching 
the probability of choice with the posterior). The choice behavior of these 
two types of Bayesian observer is shown in Figure 3a. We found that the 
reward rate (that is, the percentage harvested of the assigned rewards) 
for our model, probabilistic Bayesian and strict Bayesian observers to 
be equal to 79%, 84% and 89%, respectively. Therefore, the reward rate 
of our model is lower than a Bayesian observer who has direct access to 
the posteriors associated with each pattern without underestimating the 
WOEs. However, the model performance is only slightly different from a 
probabilistic Bayesian observer.

Neural activity correlates of probabilistic inference
To link decision making with its underlying neural activity, we exam-
ined how shape presentation influences the firing rates of decision 
neurons, and hence the model’s choice behavior. As shown in sample 
neural traces (Fig. 4), the activity of decision neurons is driven by 
value-encoding neurons and is thereby influenced by the WOEs of 
the presented shape on each trial.

We analyzed how the neural activity and the cumulative evidence 
co-vary in time. Among different ways to measure evidence provided 
by presented shapes, we chose to perform the same analysis as in ref. 6, 
using the log LR that selection of red or green target is accompanied 
by reward after the presentation of n shapes (see Online Methods for 
details). We observed a graded dependence on the log LR (Fig. 5a). 
Moreover, the average activity in each epoch is a linear function of the 
average log LR in that epoch (compare with Figs. 4 and 5a in ref. 6). We  
also computed the incremental change in the population firing rate 
across successive epochs of shape presentation, and we found that this 
change was proportional to the average change in the log LR (∆log LR) 
caused by the presentation of a new shape (see Supplementary Fig. 5). 
All of these simulation results are similar to the results observed 
experimentally in LIP neurons of behaving monkeys6.

Because the neuronal activity was also strongly modulated by the choice 
on each trial, we performed the same analysis on the data divided into two 
groups depending on the choice of the model on each trial (Fig. 5c and 
Supplementary Fig. 6). We found that the baseline of the neural activity 
was higher when the choice was the preferred target. Conversely, modula-
tion by evidence of neural activity was weaker when the choice was the 
preferred target. This is qualitatively similar to the observed modulations 
of LIP neurons when the choice was toward the response field versus away 
from it (see Supplementary Figs. 7 and 8 in ref. 6).

To conclude, neural activity in our model reproduced the main 
physiological observations from LIP in the monkey experiment6. 
These results demonstrate that empirically observed neural correlates 
of probabilistic quantities such as likelihoods may be interpreted in 
terms of synaptic rather than neuronal computations.

Model prediction: effect of prior probability
The behavioral and neural data of the weather prediction experiment 
were reported in terms of likelihood ratios6. Because in this experi-
ment the prior reward probability was the same for the two choice 

a b
Strict Bayesian

Prob. Bayesian

−4 −3 −2 −1 0 1 2 3 4
0

0.25

0.50

0.75

1.00

Evidence for A (ΣWOE)

P
ro

ba
bi

lit
y 

of
 s

el
ec

tin
g 

A

−∞ −1.0−0.5 0 0.5 1.0 ∞
−1.5

−1.0

−0.5

0

0.5

1.0

1.5

S
ub

je
ct

iv
e 

w
ei

gh
ts

Assigned weights

Figure 3 Choice behavior of the model and the subjective weight of 
evidence in the weather prediction task. (a) Probability of choosing 
alternative A as a function of the evidence favoring this alternative for 
all patterns with finite WOEs. The evidence is equal to the sum of the 
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alternatives, these data can equivalently be expressed in terms of pos-
terior odds. In our model, evidence from multiple cues is combined by 
effectively summing the log naive posterior odds, which are different 
from log likelihood ratios when priors are not equal. Therefore, we 
next explored the model’s behavior in simulations when the priors 
were not equal (see Online Methods for details).

The model makes decisions based on the differential input, which 
computes the sum of the log naive posterior odds of shapes in a given 
pattern. The latter is proportional to the log posterior odds for that 
pattern (Supplementary Fig. 7a), a general quantity that we used to 
express the psychometric function (Fig. 6a).

It is evident that the model’s choice behavior is strongly biased 
toward the more probable alternative (that is, the alternative that is 
assigned a reward more often—A in these simulations). We defined 
the bias in the choice behavior to be the probability of choosing A 
when the log posterior odds is zero. We found the bias in the choice 
behavior of our model to monotonically increase with the log prior 
odds (Fig. 6b). In contrast, an ideal Bayesian observer would display 

no bias (Supplementary Fig. 8; but see Supplementary Fig. 9 for alter-
native Bayesian observers that show bias in the choice behavior).

To elucidate the bias in the choice behavior, we examined how the 
synapses learn about evidence related to each shape in this modi-
fied task. We found that the difference in the synaptic strengths is 
increased with the prior, while it is still a linear function of the log 
naive posterior odds (Fig. 6c), with a nearly identical slope (hence 
independent of the prior). Notably, the difference in the synaptic 
strengths could be fitted as a linear function of the log naive posterior 
and log prior odds: 
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where linear fitting yielded a = 0.48 and b = –0.31.
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Figure 5 Neural population activity is parametrically correlated with the 
log LR. (a) Effect of the log LR on the firing rate of decision neurons. The 
population activity in each epoch is aligned on the onset of each shape 
stimulus presentation, and the average over many trials is computed for 
five quintiles of the log LR in that epoch (plotted in different colors; more 
red means larger log LR favoring alternative A). The log LR in each epoch 
is equal to the sum of the log LR of shapes that are presented before 
and during that epoch. (b) Average population firing rate as a function of 
the log LR for four epochs. Average firing rate during the last 250 ms is 
computed by grouping the log LR (in base 10, or the unit called a ‘ban’) 
into ten equal bins in each epoch. (c) Average activity as a function of the 
log LR in each epoch, plotted separately for trials where the choice is the 
preferred (black) or nonpreferred (gray) of the neural population. Slope 
with estimated s.e.m. is shown for each linear fit separately.
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c

b

1 2 3 4 Figure 4 Model neural population activity during the weather prediction 
task. (a) Firing activity of two (black, A; gray, B) choice-selective 
populations in the decision-making network on a few sample trials. On 
these trials, the trump shape favoring A (with infinite WOE) is presented 
in epochs 1–3; in epoch 4, any one of the five shapes providing evidence 
in favor of A is presented. Time zero: onset of choice targets, fixation point 
and the first visual shape stimulus. Four epochs, sequential presentation 
of four shapes; last dashed line, offset of fixation point. If presented 
shapes in consecutive epochs are strongly predictive of an alternative, the 
activity of the population selective for that alternative increases, whereas 
the competing population is suppressed. (b) Sample trials where the same 
shape, with WOE = 0.7, is presented in the first three epochs; in the last 
epoch, any of the three shapes with WOE ≥ 0.7 is presented. (c) Sample 
trials where the same shape, with WOE = 0.3, is presented in the first 
three epochs; in the last epoch, any shape with WOE ≥0.3 is presented. 
In this case, the population B wins the competition and determines the 
choice of the network on some trials. If presented shapes are not strongly 
predictive of either alternative, the difference between the activities of two 
populations remains small during the trial.
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Hence, there is also a bias in the information stored in plastic syn-
apses concerning the evidence provided by each shape stimulus, when 
priors are not equal. Let us define the bias in the learned evidence as 
the probability of choosing A when one shape is presented alone (after 
learning) and when the log naive posterior odds is zero (note that 
there is no shape with zero log naive posterior odds, so this measure of 
bias is based on extrapolation). This probability (that is, choice bias) 
is less than 0.5 and is proportional to the log prior odds (Fig. 6b; see 
equation (9) in Supplementary Note 2). Therefore, if, after learning, 
the model is asked to make a judgment based on a single cue, the 
choice behavior is biased toward the less probable alternative (B in this 
case). At first sight, this result would seem to contradict the observed 
bias in the psychometric function toward the more probable alterna-
tive, but it can be explained as follows (for complete explanation, see 
Supplementary Note 2).

When a pattern consisting of four shapes is presented, the sum of 
the log naive posterior odds of shapes in that pattern is proportional 
to the log posterior odds for that pattern but is also positively biased 
by the log prior odds (Supplementary Fig. 7a): 
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where P(A|Ct) is the posterior probability that A is assigned a reward 
given that a set of patterns Ct is presented, g = 0.36, and l = 3.64. 
The sum of the log naive posterior odds provides an estimate of the 
log posterior odds because the reward assignment is based on the 
sum of the WOE of shapes in each pattern. Combined with equation 
(7), we see that the total differential synaptic inputs ∆cii

ss∑ , which 
determines the choice behavior of the model, is given by 
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At zero posterior odds, because (al + 4b) > 0, the overall effect of prior 
is positive and the choice behavior is biased toward the more probable 
alternative (Fig. 6a,b). These results are robust and are not sensitive to 
the model parameters (see Supplementary Fig. 10 and  Notes 4 and 5).

Intuitively, with increasing prior, plastic synapses onto decision 
neurons selective for the more probable alternative (A) are potentiated  

more often, and the difference in the synaptic strengths for all shapes 
becomes more positive. However, according to our learning rule, 
synapses are updated collectively on each trial, independently of 
their exact roles in the ultimate decision, and the prior information 
is mixed with, and attenuated by, the evidence provided by different 
sets of synapses. Therefore, the influence of the prior on each set is 
smaller than it should be, and this results in a bias toward the less 
probable alternative in the estimate of predictive power of each shape. 
By contrast, when four shapes are presented together, the influence 
of the prior on each of four shapes in a pattern adds up and amounts 
to a bias toward the more probable alternative.

We have shown that the differential synaptic input is linearly pro-
portional to the log naive posterior odds, with a slope approximately 
independent of the prior probability (Fig. 6c). Consequently, the aver-
age neural activity in each epoch (dictated by the differential synaptic 
input) depends linearly on the log LR in that epoch, and the slope is 
only weakly influenced by the prior probability (Fig. 6d). The effect 
of the prior, however, is manifested in the range of firing rates, as the 
prior induces a shift in the differential synaptic input. As can be seen 
by comparing Figure 5c with P(A) = 0.5 and Figure 6d with P(A) = 0.8,  
the firing rates are more markedly different with a larger prior, when 
the choice is the preferred or nonpreferred target of the decision  
neurons. This difference in the neural activity gives rise to biased 
choice behavior toward the alternative with a larger prior.

DISCUSSION
The main findings of this paper are threefold. First, summing log 
posterior odds, a seemingly complicated calculation, can be read-
ily realized, through approximations, by a plausible plasticity 
mechanism with bounded synapses in a decision circuit. Second, 
a biophysically based neural circuit model implementation of the 
monkey weather-prediction task6 quantitatively accounted for many 
 behavioral and single-unit neurophysiological observations with a 
small number (3) of free parameters. Third, considering situations 
wherein the choice alternatives have unequal priors led us to non-
trivial predictions about deviations from the Bayes decision rule.

Inference and combination of information
The weather prediction task exemplifies complex decision mak-
ing in which one must acquire information concerning the pre-
dictive power of each sensory cue as well as combine evidence 
from multiple cues to make a choice. In this work, we showed that 
a decision neural circuit model endowed with a simple form of 
reward-dependent synaptic plasticity is capable of such probabi-
listic reasoning. Hence, such a high-level cognitive function may 
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Figure 6 Effect of prior probability on the choice behavior and neural 
activity. (a) Psychometric function for patterns with finite log posterior 
odds, plotted for four values of prior probability. Gray lines, logistic 
function fits. (b) Bias of the psychometric function (open circles) and of 
the differential synaptic input (learned evidence) about each shape (filled 
circles), as a function of the log prior odds. These biases are defined as 
the probability of selecting choice A at zero log posterior odds. An ideal 
Bayesian observer shows no bias. The dashed lines are only to guide 
the eyes. (c) The difference in the synaptic strengths for each shape as 
a function of the log naive posterior odds for different values of prior 
probability. Symbols same as in a; dashed lines, linear fits. Different colors 
represent different shapes. (d) Average population activity in each epoch 
as a function of the log LR in that epoch in the case of P (A) = 0.8. The 
black (or gray, respectively) points show data from trials where the choice 
is the preferred (or nonpreferred, respectively) of the neural population. 
Slope with estimated s.e.m. is shown for each linear fit separately.
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be instantiated by reward-dependent learning, rather than by the 
sophisticated strategies assumed in some human studies23.

We showed that plastic synapses in our model dynamically learn 
and store the association between each shape and outcome in just a  
few hundred trials, despite the large number of patterns in this task 
(104 patterns). This happens because a synaptic plasticity rule that 
assumes independence between sources of information enables the 
system to learn regularities in the external world quickly and robustly. 
This rule also allows plastic synapses to encode the predictive power 
related to each shape in the form of the naive posterior probability. As 
a result, the predictive weight assigned by the model to each shape is 
smaller than the assigned weight of evidence, as observed experimen-
tally. Note that when conditioned on an outcome (for example, target A  
is assigned a reward), the evidence samples provided by different cues 
are no longer statistically independent. Such conditional dependence 
is complex and may be ignored by the brain in the weather prediction 
task6. We propose that synaptic computation of the naive posteriors, 
which do not take into account conditional dependences, provides 
a simple cellular mechanism for the brain to perform inference and 
cue combination.

Decision neurons integrate evidence from different cues, simply 
through convergence of synaptic inputs from value-encoding neu-
rons. The strong recurrent dynamics of the decision circuit is critical 
for generating choices stochastically on single trials; the trial-averaged 
probability of choosing an option is a sigmoid function of the differ-
ence in the inputs associated for each choice option9–11. The latter, as 
we have shown, is approximately proportional to the sum of the log 
naive posterior odds. Therefore, by summing the log naive posterior 
odds of shapes in a pattern, our model uses a different strategy than 
ideal Bayesian observers. Nevertheless, its choice behavior is close to 
the probabilistic Bayesian observer who follows ‘probability match-
ing’24–26, and so it provides a biophysical instantiation of the proba-
bilistic Bayesian decision rule for two-alternative choice tasks while 
using a conceptually different framework.

Influence of prior information and ‘base-rate neglect’
To differentiate the effect of log likelihood ratios and log posterior odds 
on decision making, we simulated the weather prediction task with 
unequal prior probabilities. We found that the model’s choice behavior 
is biased toward the more probable alternative, whereas the information 
encoded by plastic synapses concerning each shape is biased toward the 
less probable alternative. These predictions are supported by evidence 
from the weather prediction task in a human study in which subjects 
predict one of the two outcomes (for example, rain or sunshine) after 
observing one, two, three or four tarot cards1,20. At the end of the exper-
iment, the subjects are asked to estimate the strength of association 
between a card and an outcome. When the prior probabilities are not 
equal, a card that is equally predictive of each outcome is perceived to 
be more predictive of the less probable outcome, a phenomenon that 
is known as base-rate neglect and has been described as a judgment 
fallacy27,28. At the same time, the choice behavior is biased in favor of 
the more probable alternative (see Table 1 in ref. 20).

Using our model, we can explain these counterintuitive results in 
terms of a plausible biophysical mechanism. Although a few models 
have been proposed to explain base-rate neglect20,29, all these mecha-
nistic models assume learning mechanisms that require access to all 
connection weights in the network and, moreover, do not pertain 
to any biophysical mechanisms and constraints. Our model predic-
tion on combination of information from different sources through 
addition of the log naive posterior odds can be tested more directly 
experimentally. For instance, if after learning the subject must predict 

the outcome of a number of cues together (for example, one, two or 
three), we expect that the bias in these predictions will be propor-

tional to b log
( )

( )10
P A

P B







 times the number of cues (equation (9)).

LIP neural activity and probability representation
Various oculomotor experiments in monkeys have shown that activ-
ity of LIP neurons encodes decision variables8 and is correlated with 
reward values of choices19,30–33. It has been proposed theoretically 
that a neural population, such as that in LIP, can represent probability 
distributions concerning sensory information on each trial, which in 
turn can be used to perform optimal decision making34–36. Adding 
to this body of literature, a recent experiment demonstrated that 
activity of LIP neurons reflects probability integration, namely the 
summation of the log LR (ref. 6). This quantity, however, can be only 
computed by tabulating the frequency of occurrence of each shape 
combination and the outcome in different epochs of the task (see 
Online Methods). Our model suggests that LIP neurons may reflect 
reward probability, such as log posterior odds (rather than log LR); 
but posteriors are encoded at synapses onto action value–encoding 
neurons that project to LIP. Consequently, on every trial, LIP neurons 
integrate reward information and contribute to decision making. Our 
model prediction can be tested experimentally using unequal priors, 
which would make it possible to differentiate the log naive posterior 
odds and the log LR.

The plastic synapses proposed in our model should be found in 
neural circuits involved with representation of stimulus–reward or 
action–reward associations, such as parts of the prefrontal cortex37,38 
and basal ganglia39–41. Moreover, corticostriatal synapses show long-
term potentiation and depression that depend on the presence or 
absence of dopamine modulation42,43, and dopamine neurons are 
involved in reward signaling44,45. All together, these findings pro-
vide strong neurophysiological support for the synaptic plasticity 
rule used in this paper. Consistently, using functional brain imaging 
in humans, it has been shown that the striatum gradually becomes 
active as learning progresses in the weather prediction task46. It 
would be worthwhile, in future experiments, to test whether this 
and other brain areas encode reward probabilities in the form of log 
posterior odds.

Our model is general and can be applied to different probabilistic 
decision making tasks. Indeed, we have used a similar learning rule and 
decision making mechanism to capture a foraging behavior known as 
the matching law9, as well as choice behavior in a competitive game10. 
This work shows how complicated inference and cue combination can 
be performed by a recurrent decision circuit endowed with a plausible 
synaptic plasticity rule. Perhaps other high-level cognitive abilities can 
be instantiated by simple neural mechanisms as well.

METhODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METhODS
description of the weather prediction task. In the simulated experiment, 
monkeys were trained to choose between two color targets (green and red) after 
observing four shapes that were presented on a screen sequentially at 500-ms 
intervals6. These shapes were selected randomly from a set of ten distinguishable 
shapes with replacement, {S1, S2, …, S10}, each of which was assigned a unique 
weight of evidence (WOE). The WOE for each shape was defined as the log LR 
that a red or green target was assigned a reward; or, equivalently, the selection 
of red or green target was accompanied by a reward. The WOEs for these ten 
shapes, {w1, w2,…, w10}, were chosen to be [−, −0.9, −0.7, −0.5, −0.3, 0.3, 0.5, 
0.7, 0.9, ] in favor of the red target. For example, the presentation of a shape 
with WOE = 0.9 by itself predicted that the red target was assigned a reward 89% 

=
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On each trial, four shapes (which we call a pattern) were presented on the 

screen and either of the two targets was assigned a reward with a probability 
depending on the sum of the WOEs of all shapes in that pattern. More specifically, 
the probability that the red target was assigned a reward given that four shapes 
were presented was equal to 
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where sn represents the shape shown in the nth epoch. The probability that the 
green target was assigned a reward was 1 – P(R | s1,s2,s3,s4).

To introduce an unequal prior, we first generated a set of patterns according 
to the paradigm described and then randomly removed a portion of trials in 
which the reward was assigned to the less probable alternative. This alteration 
changes the prior probability that each alternative is rewarded without changing 
the structure of the task.

description of the model and learning rule. The model is an extended version 
of our previous biophysically-based model of probabilistic decision-making 
network9,10,14. The decision making circuit of the model is a firing-rate model 
which has been shown to reproduce the choice and neural activity of the detailed 
spiking network model15. All details about the decision circuit of the model and 
its parameters were reported elsewhere15.

The model consists of three layers (Fig. 1a). The first layer contains sensory 
neurons that are selective for visual cues (shapes). These cue-selective neurons 
can be located in the inferotemporal cortex, which has been shown to contain 
neurons that encode different shapes by a combination of active and inactive 
columns selective for individual features47,48. The cue-selective neurons project 
to the second layer, where neurons learn to encode reward values of the two 
alternative responses (action values) through plastic synapses that undergo 
reward-dependent Hebbian modifications9–11 (see below). The second layer 
therefore presumably corresponds to certain frontal areas, such as the anterior 
cingulate cortex or the dorsolateral prefrontal cortex, that are known to be 
involved with representation and learning of action values37,38. The conver-
gence from cue-selective neurons enables value-encoding neurons to combine 
information from different cues. The third layer is a decision circuit with two 
competing neural pools that are selective for choice (‘preferred target’) A and B,  
respectively. This decision circuit was modeled in the same way as in our  
previous work9,14,15. We compared the firing activity of these decision neurons 
with neural data recorded from LIP6.

Computer simulations followed the experimental protocol. On a simulated 
trial, at the onset of the first shape stimulus, the visual inputs (representing 
fixation point as well as the visual cue) triggered a brief transient response of 
neurons in the decision-making network that decreased to a moderate level, 
similarly to LIP neurons6. Upon the presentation of each shape, the activity of 
sensory neurons selective for that shape was increased from zero to a constant 
value and this activity was sustained throughout the trial (if a shape was repeated 
on a trial, the activity of the corresponding population was multiplied by the 
number of repetitions of the shape on that trial). At the end of the trial, when 
the fixation point goes off, the activity of these two populations drops due to 
a decrease in the overall inputs (see below). This is followed by a divergence of 
activity between the two populations that, as a distinctive feature of competition 

in the decision-making network, signals the choice of the model on each trial15. 
Specifically, the model’s decision is determined by the neural population that 
is the first to reach a fixed firing rate threshold of 30 Hz. In general, a popula-
tion of neurons receiving larger inputs reaches a higher level of activity and 
consequently has a higher chance to win the competition and determines the 
model’s choice on a trial.

Because the sensory responses of cue-selective neurons are similar, the only 
factor that differentiates the inputs to decision neurons is the strength of plastic 
synapses from sensory neurons onto value-encoding neurons. In addition to 
these inputs, decision neurons also receive a large background input as well as 
purely visual inputs, which mimics the visual response of neurons in the visual 
cortex and keeps the decision circuit from entering the competition regime dur-
ing the presentation of four shapes and before the extinction of fixation point  
(see Supplementary Fig. 11 and Supplementary methods for more details).

The inputs to decision neurons are determined by the firing activity of sensory 
neural populations encoding the presented shapes, and by the strength of plastic 
synapses from these populations onto value-encoding populations. We assumed 
these plastic synapses are binary (that is, they only have two stable states)21,22, on 
the basis of evidence that plastic synapses have discrete (binary) states49,50. Here 
we used binary synapses, but our results still hold with multiple discrete states. 
For binary synapses, the average strength of these synapses can be defined as the 
fraction of synapses in the potentiated state, denoted by ciA and ciB (for synapses 
from neurons selective for shape Si onto value-encoding neurons selective for 
alternative A or B, respectively).

At the end of each trial, plastic synapse were modified according to a sto-
chastic reward-dependent Hebbian learning rule9–11,21,22. First, Hebbian plas-
ticity requires high activity in both pre- and postsynaptic neurons, so only 
synapses from cue-selective neurons selective for presented shapes onto the 
value-encoding neurons selective for the chosen alternative were modified. 
Second, depending on the outcome (reward or no reward) of a given trial, 
plastic synapses were potentiated or depressed. Third, these modifications took 
place stochastically.

At the end of each trial, only neural populations selective for all presented 
shapes (through working memory) and for the selected alternative were active. 
If the choice of the model was rewarded, all sets of synapses selective for pre-
sented shapes onto the value-encoding neurons selective for the chosen alter-
native (say A) were potentiated, with probability q+. That is, all synapses in 
the depressed state made a transition to the potentiated state with probability 
q+. As a result, the synaptic strength for each set of plastic synapses (say i) was 
updated as follows 

c c q ciA iA iA→ + −+( )1
 

(11)

Alternatively if the choice of the model was not rewarded, plastic synapses were 
depressed with probability q−, so the synaptic strength was updated as 

c c q ciA iA iA→ − –  
(12)

For all simulations presented in the paper, we set q+ = 0.02 and q− = 0.02, except 
for the analytical results in Fig. 1 and Supplementary Note 4 where we show how 
the model’s choice of behavior depends on the learning rates.

data analysis. All of the data analysis and average values reported here were 
computed over 100,000 trials of the simulated experiment, except values related 
to the neural activity of decision circuit, which were computed using 20,000 
simulated trials. To estimate the influence of each shape on the model’s choice 
behavior, we used a logistic regression fit similar to one used for the monkey 
experiment6. We assumed that probability of selecting a choice is influenced by 
the presence of each shape as 

P Q q NA

Q

Q i i
i

=
+

=
=
∑10

1 10 1

10

where
 

(13)

where the Ni is the number of appearances of shape i in each pattern. The regres-
sion coefficients, qi, are called the subjective weight of evidence (SWOE) and 
measure the influence of each shape on decision making.

We used the log LR through the paper as a measure of evidence provided by 
the presented shapes until a certain epoch or the end of a trial. The log LR that a 
target is assigned a reward is equal to 
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(14)

This quantity was computed by tabulating the frequency of reward being assigned 
to each shape combination for each epoch. To compute the change in the log LR 
due to presentation of each shape, we calculated the average change in the log 
LR due to the presentation of another shape from one epoch to the next, while 
excluding the trump shapes if they predicted one of the outcomes deterministi-
cally (similarly to ref. 6).
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